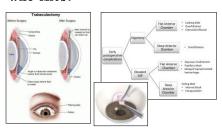

OUTLINE

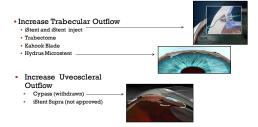
- · Review of Anatomy
- · Review of devices and various considerations
- Research around the devices and success

PRODUCTION

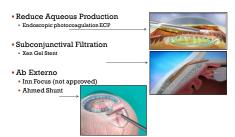
DRAINAGE


WHAT ARE MIGS?

- Minimally invasive glaucoma surgeries (microinvasive ?)
- Cardinal features as proposed by Saheb and Ahmed in 2012
 Ab interno, micro-incisional approach (*note: Some use an ab-externo approach.)
 Minimal trauma/disruption to normal anatomy and physiology
 Demonstrable/reliable IOP lowering


- Extremely high safety profile
 Rapid post-op recovery, with minimal need for follow-up

- · MIGS typically require shorter operation time and allow for more rapid recovery.
- MIGS can be combined with/without cataract extraction for patients with mild to moderate glaucoma and cataracts.
- OAG, or other types like exfoliation and pigment dispersion cases
- MIGS may be less effective in lowering IOP than traditional glaucoma surgeries,
- MIGS do fill a gap in the treatment of patients who would benefit from lower IOP but do not warrant the risk of traditional surgery.
- Decrease medication use
- · Combined with cataract


WHY MIGS?

MIGS TREATMENTS

MIGS TREATMENTS

ISTENT

- First implant 2005
- Heparin-coated, non-ferromagnetic titanium stent; 1.0 mm x 0.3 mm.
- Ab interno insertion into Schlemm's
- The iStent (or trabecular microbypass stent) direct channel into Schlemm canal and the subsequent collector channels.
- Safe with MRI testing up to 3 tesla

ISTENT -FIRST GENERATION

- 26-gauge disposable insertion instrument
- right or left-handed model
- The heparin coating helps to prevent blockage or fibrosis
- Three retention arches ensure that the device will be held in place
- It is 1.0 mm in length,
- 0.33 mm in height.
- 0.33 mm in height
 weight of 60 mg.
- The snorkel has a length of 0.25 mm and bore diameter of 120 micro meter.

Randomized Evaluation of the Trabecular Micro-Bypass Stent with Phacoemulsification in Patients with Glaucoma and Cataract

- Primary endpoint unmedicated IOP
- <21mmHg at 1 year
- >72% of treatment eyes versus 50% of control eyes
- Secondary endpoint unmedicated 20% reduction in IOP
- >66% percent of treatment eyes versus 48% of control eyes

Ophthalmology 2011;118:459-467 © 2011

RESEARCH ARTICLE

iStent with Phacoemulsification versus Phacoemulsification Alone for Patients with Glaucoma and Cataract: A Meta-Analysis

Monali S. Malvankar-Mehta^{1,2}*, Yiannis lordanous¹, Yufeng Nancy Chen², Wan Wendy Wang², Sangita Shantiial Patel⁴, John Costella⁶, Cindy M. L. Hutnik^{1,6}

- Meta-analysis of 32 publications
- Sample size 2495
- Phaco vs Phaco with 1 stent vs Phaco with 2 stents

- Percentage reduction in IOP from baseline
- Phaco A 4%IOP reduction (IOPR%) procedure
- Phaco + 1 iStent 9%
- Phaco + 2 iStents implants 27%

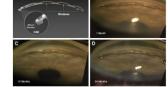
SO WHAT HAPPENS 2 YEAR PERIOD

- Craven ER, Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: two-year follow-up. J Gataract Refract Surg. 2012;38:133994.
- Significant difference between treatment and control group
- Control group- Phaco only IOP was increased
- . Treatment group Stent with Phaco IOP remained stable

PLOS ONE | DOI:10.1371/journal.pone.0131770 July 6, 2015

ISTENT INJECT

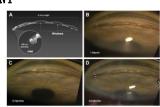
- Apical head (230 microns in width) connected to a narrow thorax that is attached to a wider flange.
- The head is inserted directly into the canal without the necessity to adjust the angle for implantation.
- It resides within the canal and contains 4 inlets for fluid passage
- The 23-gauge stainless steel injector contains 2 stents for implantation


ISTENT SUPRA (NOT AVAILABLE)

- heparin-coated polyethersulfone and a titanium sleeve.
- Ab interno implantation into the suprachoroidal space
- Not available

HYDRUS MICROSTENT

- The Hydrus device is Crescent-shaped scaffold that is open posteriorly
- "intracanalicular scaffold" for Schlemm's canal and a bypass of the TM
- nickel-titanium alloy (nitinol)
- Contains three windows along its 8mm length.
- With or without phacoemulsification
- One quadrant of Schlemm's



Ophthalmology 2019;126:29-37

HYDRUS MICROSTENT

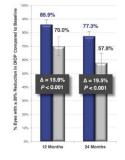
- The device is implanted through the trabecular meshwork using a manual inserter.
- The device is designed for ab interno placement through the TM into the Schlemm's canal.
- * The inlet segment of the device resides in the AC, while the remaining length of the stent dilates and scaffolds a quadrant of the Schlemm's.
- Preclinical studies suggest that Schlemm's canal scaffolding over a quadrant provides access to multiple collector channels.

Ophthalmology 2019;126:29-37

A Schlemm Canal Microstent for Intraocular Pressure Reduction in Primary Open-Angle Glaucoma and Cataract

The HORIZON Study

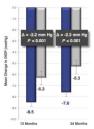
- 1 day, 1 week, and 1, 3, 6, 12, 18, and 24 months postoperatively.
- · Primary end point
- proportion of subjects demonstrating a ≥20% reduction in unmedicated modified diurnal IOP (MDIOP)
- Secondary endpoint
- > change in mean MDIOP from baseline at 24 months


Ophthalmology 2019;126:29-37

- 369 eyes Hydrus Micro Stent (HMS)
- 187 eye control (no stent)

group

HORIZON RESULTS - At 12 month and 24 months, unmedicated modified diurnal IOP was reduced by 20%


- Modified Diurnal Intraocular
- 4 ±1 hours apart between 8AM and 4PM (ANSI 280.27 guidance for MIGS investigational studies)

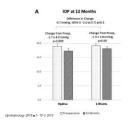
Ophthalmology 2019;126:29-37

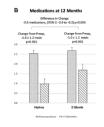
HORIZON RESULTS MODIFIED DIURNAL IOP

 The modified diurnal IOP reduction in 24-month unmedicated MDIOP

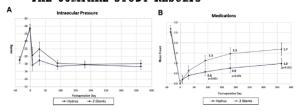
HORIZON MEDICATIONS FREE SUBJECTS

Ophthalmology 2019;126:29-37 12 Months 24 Months

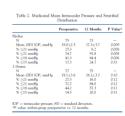

A Prospective Randomized Trial Comparing Hydrus and istent Microinvasive Glaucoma Surgery Implants for Standalone Treatment of Open-Angle Glaucoma

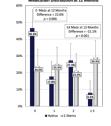

The COMPARE Study

- N= 152 eyes of 152 individuals
- 1:1 randomization
- Hydrus Versus 2 iStents


Ophthalmology 2019; ■:1-10 © 2019

THE COMPARE STUDY RESULTS




THE COMPARE STUDY RESULTS

Ophthalmology 2019;∎:1-10 © 2019

THE COMPARE STUDY RESULTS

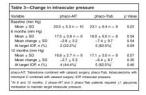
Ophthalmology 2019; e:1-10 © 201

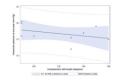
THE COMPARE STUDY RESULTS

- · Failure was defined as
- any secondary glaucoma surgery, intraocular pressure (IOP) >18 mmHg,
- or use of hypotensive medications on 2 consecutive visits after the 1-month followup visit.

HYDRUS MICROSTENT HAS ADVANTAGE OVER 2-ISTENT TRABECULAR BYPASS -1 YEAR

- $\,$ Medication use was reduced by a greater margin or eliminated completely more frequently in the Hydrus group (46.6% vs. 24.0%, P =0.006)
- \bullet Among eyes without medications, Hydrus achieved an IOP 18 mmHg more often (30.1% vs. 9.3%,P <0.001).
- At 12 months, mean IOP was reduced in the Hydrus group concurrently with elimination of 1.6 medications; in the 2-iStent group IOP was maintained at preoperative levels concurrently with reduction of 1.0 medication.




- The Trabectome removes a strip of trabecular meshwork and inner wall of Schlemm's canal using high frequency electrocautery.
- Up to 180 degree
- The 19.5-gauge handpiece incorporates an insulated footplate that enters Schlemm's canal through the trabecular meshwork.
- An irrigation port keeps the anterior chamber formed and dissipates heat, and an aspiration port is adjacent to the cautery electrode

Prospective randomized controlled trial of phaco-trabectome versus phaco-trabeculectomy in patients with open angle glaucoma

Jessica L.M. Ting, MD, Christopher J. Rudnisky, MD, MPH, Karim F. Damji, MD, MBA

Small sample RCT.

CAN J OPHTHALMOL-VOL. 53, NO. 6, DECEMBER 2018

TRAB 360 (SIGHTSCIENCES)

- TRAB 360 is a disposable, non-powered device used to perform an ab interno 360° trabeculotomy.
- The TRAB 360 device consists of a cannula, from which a flexible nylon-like trabeculotome is advanced into Schlemm's canal for 180 degrees
- After the trabeculotomy is created, the trabeculotome can be retracted once and then advanced into the remainder of Schlemm's canal in the opposite direction for up to a total of 360 degrees.

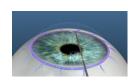
XEN GEL STENT

- A glaucoma implant designed to reduce intraocular pressure in eyes suffering from refractory glaucoma
- 6-mm length, 45-micron inner diameter—about the length of an eyelash
- Composed of gelatin, cross-linked with glutaraldehyde
- Creates a permanent channel through the sclera allowing flow of aqueous humor from the anterior chamber into the subconjunctival space

Ab-Interno Bleb

ENDOCYCLOPHOTOCOAGULATION (ECP)

- ECP consists of cyclodestruction of the ciliary body epithelium to reduce aqueous production and therefore IOP.
- The ECP probe is reusable device, which includes a laser source, camera, and light source.
- The probe directed towards the anterior ciliary processes delivers continuous energy (810 nm wavelength) for successful photocoagulation.
- Localized shrinkage and whitening of the processes
- Through a single corneal incision, approximately 240 to 300 degrees of the ciliary processes can be treated, but more incisions are needed for a 360-degree treatment.
- As expected, the greater the amount of processes treated, the greater the reduction in IOP and need for glaucoma medications.

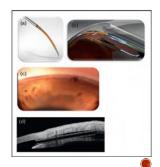


EXCIMER LASER TRABECULOSTOMY

- Excimer laser trabeculostomy (ELT) creates small holes in the trabecular meshwork and inner wall of Schlemm's canal
- Energy from a quartz fiberoptic probe connected to a xenon chloride pulsed excimer laser.
- Eight to 10 laser punctures are spaced over 90-degree, with visible whitening of the trabecular meshwork and bubble formation

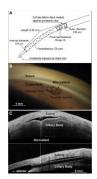
https://webeve.ophth.uiowa.edu/eveforum/tutorials/migs/

AB INTERNO CANALOPLASTY

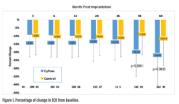

- Ab interno canaloplasty (ABiC) increases aqueous outflow through cannulation of Schlemm's canal with an illuminated microcatheter (iTrack, Ellex)
- An ophthalmic viscosurgical device is injected to viscodilate Schlemm's canal and the proximal collector channels.
- · It has been theorized that viscodilation may also create microperforations within the TM to aid in aqueous outflow.
- As the viscoelastic is injected, blanching of episcleral vessels, which is indicative of a patent collecting system, serves as an indirect indicator of success.
- Indications for ABiC include mild to moderate OAG when maximal medicalmanagement and laser trabeculoplasty have failed.

CONTRAINDICATIONS

- Required anticoagulation, bleeding diatheses, angle closure, obscured angle structures, severe endothelial compromise, or intraocular lens instability.
- Relative contraindications include previous corneal transplant and an inability to elevate patient's head 30° during the first postoperative week.

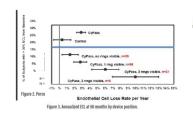

CYPASS STENT

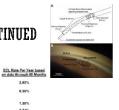
- The CyPass implant is made of polyamide material
- Inserted ab interno into the suprachoroidal space through a manual inserter



Two-Year COMPASS Trial Results: Supraciliary Microstenting with Phacoemulsification in Patients with Open-Angle Glaucoma and Cataracts

- This RCT demonstrated safe and sustained 2-year reduction in IOP and glaucoma medication use after microinterventional surgical treatment for mild-to-medicate IOMC moderate POAG.
- 505 subjects
- 131 were randomized to the control
- 374 were randomized to the microstent group
- Decrease 7.4 mmHg for the microstent group versus 5.4 mmHg in controls (P < 0.001), with 85% of microstent subjects not requiring IOP medications at 24 months




COMPASS XT RESULTS

- 3 year extension trial
- Insisted by FDA during approval
- 282 included 253 completed

COMPASS XT RESULTS CONTINUED

2.85% 0.36% 1.39% 6.02%

MIGS DEVICE	N	FOLLOW-UP TIME	MEAN % ECL	% WITH ECL >30%		
Schlemm Canal						
iStent inject (Glaukos)	505	24 months	13.1% treatment 12.3% control	10.4% treatment 9.5% control		
	20°	12 months	13.2%			
Hydrus Microstent (Ivantis)	556	24 months	14.0% treatment 10.0% control	13.6% treatment 7.2% control		
		36 months	15.0% treatment 11.0% control	14.0% treatment 10.2% control		
Trabectome (NeoMedix)	80 ^b	12 months	No change	No change		
Kahook Dual Blade (New World Medical) Unknown					
Ab Interno Canaloplasty (Ellex)	Unknown	Unknown				
Omni (Sight Sciences)	Unknown	Unknown				
Supraciliary						
CyPass Micro-Stent (Alcon)	253	60 months	18.4% treatment 7.5% control	27.2% treatment 10.0% control		
iStent Supra (Glaukos)	Unknown	Unknown				
Subconjunctival						
Xen Gel Stent (Allengan)	1 c	12 months	No change (+3.6%)	No change (+3.6%)		
InnFocus MicroShunt (Santen)	Unknown					

RISK ASSESSMENT IN PATIENT WITH CYPASS

- Routine gonioscopy is needed
- Contact with Endothelium must be noted.
- Baseline corneal thickness and endothelial cell count is needed.
- Note rings visible
- Look for edema or guttata

CYPASS MICRO-STENT POSITION ADJUSTMENT OR REMOVAL

"Situations that may ment consideration of CyPass Micro-Stent position adjustment or removal include, but are not limited to: intermittent or persistent contact removal include, but are not limited to: intermittent or persistent contact and conta

EFFECTIVENESS OF MIGS

MIGS Procedure	Decrease in IOP	Decrease in Medications	Study Type
iStent Micro-Bypass* [7]	8.4 mmHg @ 2 years	0.8 (0.2 years	Randomized controlled trial
iStent Inject [9]	8.1 mmHg ⊕ 1 year	Not available	Prospective, randomize trial
Gonioscopy-assisted transluminal trabecul- otomy (GATT)* [10]	8.4 mmHg ⊕ 1 year	1.9 @ 1 year	Retrospective review
Trabectome* [15]	6.2 mmHg @ 2 years	0.76 @ 2 years	Meta-analysis
TRAB 360 Trabeculotomy [16]	6.3 mmHg @ 131.5 days**	0.9 (9 131.5 days**	Retrospective review
Ab interno canaloplasty* [18]	4.0 mmHg.⊕ 1 year	1.0 (9 1 year	Case-series review
Hydrus Microstent* [20]	9.4 mmHg @ 2 years	1.5 @ 2 years	Randomized controlled trial
CyPass Micro-Stent* [22]	7.4 mmHg @ 2 years	1.2 @ 2 years	Randomized controlled trial
iStent Supra [23,24]	7.8 mmHg @ 2 years	Not available	Prospective, single arm clinical trial
XEN Glaucoma Treatment System [27]	9.2 mmHg @ 1 year	1.8 @ 1 year	Prospective, single arm clinical trial
InnFocus MicroShunt* [31]	16.2 mmHg @ 3 years	1.6 @ 3 years	Prospective, single arm clinical trial
Endocyclophotocoagulation* [35]	2.1 mmHg @ 2 years	1.1 @ 2 years	Prospective-case-contri study

SUMMARY

- Minimal trauma, high efficacy, high safety profile, and rapid recovery.
- $\mbox{\ \ \ }$ There is an increasing interest and availability of MIGS procedures.
- Important to have good science and long-term follow-up data.
- MIGS devices may offer benefits to our patients with glaucoma
- >through IOP reduction
- >reduced need for glaucoma medications
- ► high safety profile.
- MIGS are here to stay for the foreseeable future and its role increasing.